Syntheses, Crystal Structures, and Properties of Novel Heterooctametallic Clusters $Na₂M'₂[M₃O₄(O₂CEt)₈]$ ₂ (M' = Fe, Cr, Mo; $M_3 = Mo_3$, MoW₂, W₃)

Li Xu,* Zhaohui Li, Huang Liu, Jinshun Huang,* and Qianer Zhang

Abstract: A mixture of Na₂MO₄, $M(CO)_{6}$, FeCl₃.6 H₂O, and (EtCO)₂O was heated at 120 *'C* to produce the heterooctanuclear clusters $Na₂Fe₂[M₃O₄$ - $(O_2CEt)_{8}]_2$ $(M = Mo, 1; W, 2)$. The bioxo-capped clusters $Na[M_3O_2(O_2CEt)_9]$ $(M_3 = M_0W_2, W_3)$ were treated with Fe- $(CO)_5$, $Cr(CO)_6$, and $Mo(CO)_6$ in (EtCO), O at 120° C to afford Na, M'₂- $[M_0W_2O_4(O_2CEt)_8]$, $(M' = Fe, 3; Cr, 4;$ Mo, 5) and Na₂Mo₂[W₃O₄(O₂CEt)₈]₂ (6), respectively. The isomorphous clusters **1, 2,** 5, and **6** were characterized by X-ray crystallography. The structures, similar to those of the analogues $Na₂Cr₂[M₃O₄$ -(O,CEt),] (M = Mo, **7;** W, **8)** and $Na_2V_2[M_3O_4(O_2CEt)_8]_2$ (M = Mo, 9; W,

lo), consist of two incomplete cubanetype $[M_3O_4(O_2Et)_8]^{4-}$ units centrosymmetrically bridged by two M'(III) metal ions through *u*-oxo and propionate groups; the resulting cluster dianions are linked by Na' ions into infinite chains. Clusters **1-10** do not dissolve in water and common organic solvents at room temperature. Unlike the chromium(lI1) clusters **7** and **8,** the iron(ri1) and vanadium(iii) clusters 1 and 9 are soluble in

Keywords chromium · clusters · iron · molybdenum * tungsten

aqueous acid solution, as a result of their decomposition into isolated $[M_0, O_4]^{4+}$ cluster units. Temperature-dependent magnetic susceptibilities of **1,2,** and **7-10** were measured over the range 2-200 K and modeled by means of the spin-Hamiltonian $H = -2JS_1S_2$ to give spin exchange coupling constants *Jik* of $-0.60, -0.72, -1.76, -1.31, -4.80,$ and -1.46 K, respectively. These figures show that antiferromagnetic spin exchange coupling interactions between the magnetic, bridging M'(m) ions are very weak. These species show characteristic bands in the IR spectra at $740-820$ cm⁻¹, which can probably be assigned to $\tilde{v}(M-\mu-O)$.

Introduction

Recently, we reported a novel class of the paramagnetic heterooctametallic chain clusters $Na_2M_2'M_3O_4(O_2CR)_8$, ^[1, 2] which consist of two incomplete cubane-type cluster units $[M_3^{\rm IV}O_4(O,CR)_8]^{4-}$ (M = Mo, W) bridged by two M'(III) metal ions through μ -oxo and carboxylate groups. These clusters are of interest because they add to the extensive and developing chemistry of $[M_3O_4]$ (M = Mo, W) cluster units.^[3-11] However, because of the lack of general and efficient synthetic methods, the species of this type thus far reported are limited to chromium(III)- and vanadium(III)-bridged clusters containing homonuclear triangular units, $[1, 2]$ and little is known about their magnetic properties and stability toward aqueous acid solution. Herein we report on a new general route to such species and crystal structures of four new members of this series- $Na₂Mo₂[MoW₂O₄(O₂CEt)₈]₂$ (5), and $Na₂Mo₂[W₃O₄(O₂ -$ Na,Fe,[Mo,O,(O,CEt),l~ **(I),** Na,Fe,[W,O,(O,CEt),I, **(21,**

 $CEt)_{8}$, (6). The magnetic exchange interactions between the $bridging metal(III)$ ions in trinuclear units and solution stabilities have also been investigated.

Results and Discussion

Synthesis: The syntheses of clusters **1-10** are summarized in Scheme 1. All these preparative reactions involve the redox reaction system $\text{Na}_2\text{MO}_4/\text{M}'(\text{CO})_6/(\text{RCO})_2\text{O}$, which was previously used in the effective synthesis of triangular bioxocapped carboxylate clusters of molybdenum(1v) and tungsten(IV).^[12-16] One such reaction (M = Mo, M' = W, R = Me) was first reported by Cotton et al. to yield a mixture of the triangular bioxo-capped acetates $Na[Mo, W_{3-x}O, (O, CMe)_9]$ $(x = 1 - 3)$.^[12, 13] The reverse reactions $(M = W, M' = Mo,$ $R = Me$, Et) were found to result in the exclusive formation of the mixed-metal cluster species $Na[Mow_2O_2(O_2CR)_9]$ $(R = Me, Et).$ ^[14-16] This reaction system was recently successfully extended to the preparation of the $Mo(W)-Cr(V)$ mixedmetal clusters $Na_2M_2'M_3O_4(O_2CEt)_8$, $(M' = Cr, M = Mo, 7,$ $M = W$, **8**; $M' = V$, $M = Mo$, **9**, $M = W$, **10**) by using Cr(CO)₆ or NaVO₃ in place of M(CO)₆ or Na₂MO₄ in heated (120^oC)

^[*] Dr. L. Xu, Z. F. Li, H. Liu, Prof. J. S. Huang, Prof. Q. E. Zhang State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (P. R. China) Fax: Int. code +(591)371-4946

Scheme 1. Syntheses of clusters **1-10**

instead of refluxing $(EtCO)$, $O^[1,2]$ It is interesting to note that both reduction of $Na₂MO₄$ and oxidation of $M(CO)₆$ produced the incomplete cubane-type units $[M_3O_4(O_2CEt)_8]^{4-}$ rather than the aforementioned bioxo-capped species, which were previously considered to predominate for Mo^{IV} and W^{IV} in carboxylic anhydrides, since the former cuboidal units could be trapped by Cr^{3+} (or V^{3+}) and Na⁺ ions in the reaction mixtures to give the insoluble heterooctanuclear infinite chain clusters. However, these two methods are limited and cannot be employed to prepare, for example, the present Fell'-bridged derivatives effectively. We thus considered designing an alternative route based on the redox reaction of $Na₂MO₄$ and $M(CO)₆$ to produce the incomplete cuboidal units $[M_3O_4(O_2CEt)_8]^{4-}$ in the presence of iron(III) complexes as a source of $Fe³⁺$ ions. As might be expected, reaction of $Na₂MO₄$, $M(CO)₆$, and FeCl₃ $6H₂O$ in heated (120 °C) propionic anhydride yielded the desired iron(III)-bridged derivatives $Na₂Fe₂[M₃O₄(O₂CEt)₈],$ (M = Mo, **1;** W, **2)** in good yields. This reaction should provide a more general route to such heterooctametallic series than the

Abstract in Chinese:

混合物 Na₂MO₄, M(CO)₆, FeCl₃ 6H₂O 和(EtCO)₂O 在 120°C 加热生 成异八金属簇合物 Na2Fe2[M₃O4(O2CEt)2]2 (M=Mo, 1, W, 2)。 双 氧帽簇合物 Na[M₃O₂(O₂CEt)₉] (M₃ = MoW₂, W₃) 与 Fe(CO)₅, Cr(CO)。和 Mo(CO)。在 120°C 的(EtCO)2O 溶液中反应分别得到 $Na₂M'₂[MoW₂O₄(O₂CEt)₈]$ ₂ (M' = Fe, 3, Cr, 4, Mo, 5) $\bar{A}I$ Na₂Mo₂[W₃O₄(O₂CEt)₈]₂ (6). 异质同晶簇合物 1, 2, 5, 6 被 X-ray 结晶学表征。其结构由两个金属(III)离子 (M')和 由其对称桥联的两个不完全立方烷单元[M₃O₄(O₂CEt)₈]⁴⁻组成。所 形成的两价簇阴离子被 Na+联结成无限链。簇合物 1-6 在常温下 不溶于水及一般有机溶剂,类似于Na2Cr2[M₃O4(O2CEt)₈]2 (M = Mo, 7, W, 8)和 Na₂V₂[M₃O₄(O₂CEt)₈]₂ (M = Mo, 9, W, 10)。簇合物 1, 9 溶于酸性水溶液并同时分解为分离的[Mo3O4]⁴⁺单元。然而, 簇 合物 7 , 8 在酸性水溶液中具有高度的稳定性 (不溶性) 。采用 自旋偶合哈密顿量 H = -2JS1 S2 对簇合物 1, 2, 7-10 在 2-200K 的 变温磁化率数据进行模拟得到其自旋交换偶合常数 J/k 分别为-0.60, -0.72, -1.76, -1.31, -4.80 和-1.46K , 表明 M'(III)磁性离子间 具有很弱的反铁磁自旋交换偶合作用。簇合物在 600-820cm⁻¹区间 的特征红外光谱被归属。

above-mentioned methods, because a far wider variety of metal(III) complexes are available compared to metalates or metal carbonyis. For instance, one can prepare cluster **7** easily and in similar yields by replacing $FeCl₃·6H₃O$ with $CrCl₃·6H₂O.$

The syntheses of clusters **3- 6** from the hetero- or homonuclear bioxo-capped propionates $Na[M_3O_2(O_2CEt)_0]$ $(M_3 = M_0W_2)$ or W_3) as starting materials are of special interest, because they confirm that the cuboidal units $[M_3O_4]$ - $(O, CEt)_{8}]^{4-}$ $(M_{3} = M_0W_{2},$

W,) in **3-6** result from the cluster conversion of the bioxocapped species with the metal triangle remaining intact.

It is noteworthy that, in addition to the above-mentioned Mo^{IV} clusters, this reaction system can also produce the interesting dinuclear Mo^V and trinuclear $Mo^{H,HH}$ carboxylates, $\text{Na}_2\text{Mo}_2\text{O}_2(\mu\text{-O}_2CCF_3)_{10}\cdot4\text{CF}_3\text{CO}_2H$ and $\text{Na}_2\text{Mo}_3\text{O}(\mu,\eta^2$ - O_2 CMe)₅(μ , η ¹-O₂CMe)(O₂CMe)₂(H₂O)].^[17, 18]

Stability: Unlike the chromium-bridged species, which are stable for at least six months (monitored by IR spectroscopy), the iron(III)-, molybdenum(III)-, and vanadium(III)-bridged clusters are only stable in air for a few days. Like clusters $7-10$, $1-6$ are insoluble in water and common organic solvents at room temperature. How-

ever, clusters 1 and 9 can be dissolved in aqueous hydrochloric acid to produce red solutions. It is interesting to note that the UV/Vis spectrum of 9 (Figure 1) is similar to that of red $[Mo₃O₄]⁴⁺$ aqua ions reported previous- $\rm{lv:}^{\{8a\}}$ this indicates that the V cations dissociate from the trinuclear centers with formation of isolated $[Mo₃O₄]⁴⁺ units. The$ peak at ca. 510 nm is flatter for **1,** pre-

Wavelength/nm

Figure 1. UV/Vis spectra of 1 (- \cdots , 0.001 M) and 9 ($-$, 0.001 M) in 2M HCl (optical $path = 1$ cm); the latter is similar to that of $[Mo₃O₄]⁴⁺$ aqua ions (- - -).

sumably because of the presence of $Fe³⁺$ ions. These results suggest that the solubility in aqueous acid solution is a consequence of the decomposition of the octametallic clusters *to* give $[M_0, Q_4]^4$ species. In contrast to the above-mentioned iron and vanadium clusters, the chromium cluster **7** dissolves only very slowly in hot HCI, and **8** is insoluble; these clusters thus display considerably higher stability toward aqueous acid solution. **A** similar trend was observed for the stability in air.

Presumably, this can be explained in terms of the stronger Cr-0 bonds, owing to the high crystal-field activation energy of Cr^{III} ions.

Crystal Structure: The isomorphous clusters **1, 2. 5,** and *6* have been characterized by X-ray crystallography. The $[Mo₃O₄$ - $(O_2CEt)_{8}]^{4-}$ unit, the $[FeMo_3O_4]_{2}^{14+}$ skeleton, the $Fe_2[Mo_3 O_4(O, CEt)_{8}$ ² dianion, and the infinite chain of cluster 1 are shown in Figures $2-5$, respectively. Table 1 lists the selected bond lcngths and angles. **A** comparison of important averaged bond lengths in **1** - **10** and related clusters is given in Table 2. An

Figure 2. Structure of the triangular unit $[Mo₃O₄(O₂CEt)₈]⁴$ of 1.

Figure 3. Structure of the $[FeMo₃O₄]₂¹⁴⁺$ skeleton of 1.

unusual feature of the trinuclear unit shown in Figure2 is the single bridging propionate ligand, which has not been found in isolated $[M_3O_4]^4$ ⁺-type clusters previously reported. The average bond lengths in the $[M_3O_4]^4$ ⁺ cores of **1, 2, 5,** and **6** are similar to the corresponding bond lengths in the other compounds shown in Table 2. The $M - O_h^*$ (O2 or O3) bonds are significantly lengthened compared to the $M-O_b$ bonds. This implies that $d-p \pi$ bonds in the Mo₂O_n^{*} arrays are considerably weakened by the bonding of $O_b[*]$ atoms to the bridging metal $M'(III)$ ions. Unlike the formal sulfur analogues $[M'M_3S_4]_2$ of double cubane-type structure,^[4] the $[FeMo₃O₄]₂¹⁴⁺$ skeleton shown in Figure 3 possesses a centrosymmetric cyclic structure characteristic of $Fe₂Mo₂O₄$ eightmembered rings (the average deviation of ring atoms from the least-squares plane is about 0.3 Å). The four FeMo₂O arrays are nearly planar (the sum of the M'-0-M angles are 346 and 359" for Fe 1 /Mo **1** /Mo 3/0 3 and Fe 1/Mo 1 /Mo 2/0 2. respectively; Table I), as is also observed for the CrW,O units in $W_3(CCH_2tBu)O_3Cr_3(O_2CtBu)_{12}.$ ^[19] This arrangement is believed to be a result of both the strong repulsion between the Mo^{IV} and Fe^{III} ions and the small radius of the oxygen atom. In fact, no $[M_3M'O_4]$ (M = Mo or W) cubane-type clusters with three or more metal-metal bonds have been prepared by far. As shown in Figure 4 and Table 1, the four $ECO₂$ groups from each trinuclear unit complete a rather regular O_6 octahedron for

Figure 4. ORTEP drawing of the octametallic dianion $Fe_2[Mo_3O_4(O_2CEt)_8]_2^2$ of **^I**(thermal ellipsoids at the *50%* probability level).

the M'(III) ions with the O-M'-O angles within 5° of the expected values for an octahedron and six similar M' – O bond lengths. It is noteworthy that $Fe-O_b[*]$ and $Mo-O_b[*]$ bond lengths in 1, 2, 5, and *6* are much longer

than corresponding $Fe-O_b$ and $Mo-O_b$ ones in $[Fe₃O]⁷⁺$ and $[Mo₃O₄]⁴⁺$ units, respectively; this indicates that the former bonds lack significant $d-p \pi$ bonding.

The octanuclear dianions shown in Figure 4 are linked by Na' ions into infinite chains characteristic of centrosymmetric Na_2O_2 four-membered rings (Figure *5).* Each Na+ ions is coordinated to four terminal propionate oxygen atoms and one capping oxygen atom in a distorted trigonal bipyramidal arrangement with rather short Na-O bonds (ca. 2.31 **A),** compared to

Figure 5. Perspective view of infinite chains of *cluster 1 with the Et groups omitted for clarity.*

Table *2.* **A** comparison of mean bond lengths (A) in clusters **1. 2,** *5-* **10,** and relaled compounds.

[a] Bridging M atoms. [b] Bridging M and M' atoms. *[c]* Terminal EtCO,. [d] Capping 0 atoms. [el Bridging EtCO,.

usual Na-0 bonds (2.42 Å) . These features are believed to be responsible for the ready formation and for the insolubility of the hetcrooctanuclear species

Magnetic Properties: Plots of the magnetic moments of **1, 2,** and **7-10** between 2 and 200 K are given in Figure 6. At 200 K the magnetic moments per M'(in) ion in **1, 2,** and **7-10** are 5.71, 5.72, 4.02, 3.98, 2.87, and 2.87 μ_B , respectively, close to the spin-only values for the magnetically isolated high-spin $Fe³⁺$ (5.92 μ_B), Cr^{3+}
(3.87 μ_B), and V^{3+} $(3.87 \,\mu_B)$, and $(2.83~\mu_B)$ ions. The values for the iron and chromium clusters **1, 2, 7,** and **8** are almost con-

described.

Figure 6. Plots of effective moments of 1. 2. and 7-10 versus temperature over the range 2 *100* K. Ihc solid linc is a best lit of the experimental data.

stant over the range 200–40 K and then decrease to 2.80, 3.90 $(4 K)$, 1.54, and 1.78 μ_B at about 2 K. The vanadium clusters **9** and **10** behave somewhat differently. For **9,** the magnetic moment sharply decreases from $2.87\mu_B$ at 200 K to $0.67\mu_B$ at 2 K. The magnetic moment of **10** varies slightly over the range 200- 9 K (200 K, 2.87 μ_B ; 35 K, 2.50 μ_B ; 9 K, 2.64 μ_B) and then decreases to 2.18 $\mu_{\rm B}$ at 4 K. The susceptibility data of these clusters have been modeled with the isotropic Heisenberg-Dirac-Van Vleck model with the spin-Hamiltonian $H = -2JS_1S_2$. A best tit of the data *(g* is fixed to 2.0) leads to the spin exchange coupling constants *J*/k of -0.60 , -0.72 , -1.76 , -1.31 , -4.80 , and - 1.46 K for **1, 2,** and **7- 10,** respectively. These figures show that the antiferromagnetic spin exchange coupling interactions between the bridging M'(III) ions are very weak, as expected for long $M'(III)-M'(III)$ distances (ca. 5.7 Å).

Infrared Spectra: The heterooctanuclear clusters in this series display several characteristic IR absorptions in the range 700– 820 cm⁻¹. For the oxofluorotungsten species $[W_3O_4F_9]^{5-}$, the IR bands at 780, 740, and 700 cm^{-1} have been previously assigned to the stretching vibrations of the $W-O_b$ bonds in the W_3O_4 core.^[9b] The corresponding bands, assigned to $M-O_b$ stretching vibrations in the clusters **1-4** and **7- 10,** are observed at the higher wavenumbers [811 (s), 785 (ms), and 753 (ms) cm⁻¹ (1); 812 (s), 784 (ms), and 754 (ms) cm⁻¹ (2); 812 (s), 783 (ms), 754 (ms)cm-' **(3),** 814 (s), 805 (s), 767 (m), 747 (m) cm- **(4);** 812(s), 799 (s). and 769 (m) cm **(7);** 813 **(s),** 805 **(s),** 766 (m), and 743 (m)cm--' **(8):** 811 (s), 787 (m). and 769 (m) cm⁻¹ (9); 812 (s), 789 (s), 761 (m), and 743 (m) cm⁻¹ (10)].^[2] All these spectra are very similar, even though they are for different cores, namely, W_3O_4 (6, **8, 10**), Mo_3O_4 (1, 7, 9), and $Mow₂O₄$ (3, 4). This is rather surprising, since the stretching force constants in isostructural species involving Mo and W are always larger for latter than for the formcr. However, a similarly unexpected behavior has also been observed in the case of the triangular bioxo-capped carboxylates $[M_3O_2(O_2CR)_6$ - $(H₂O)₃$ ²⁺ (M = Mo, W; R = Me, Et). The band $v(Fe-\mu₃-O)$ for $[Fe_3O(O_2CCH_3)_6(H_2O)_3]^+$ appears at 600 cm⁻¹,^[20] but $v(Fe-O_b[*])$ for 1 and 2 are not found in this region, owing to the fact that the $Fe-O_h^*$ bonds are remarkably weak.

Experimental Procedure

All manipulations were carried in air. All reagents were **A.** R. grade and were used without further purification before use.

 $\text{Na}_2\text{Fe}_2[\text{Mo}_3\text{O}_4(\text{O}_2\text{CEt})_8]_2$ (1): A mixture of Na_2MoO_4 :2H₂O (0.63 g, 2.60 mmol), Mo(CO)₆ (0.40 g, 1.50 mmol), FeCl₃.6 H₂O (0.35 g, 1.30 mmol), and propionic anhydride (60 mL) was placed in a flask with a fine-needle syringe and heated at 120 °C for 3 d. After the reaction had been allowed to cool to room temperature, well-formed **hlack** crystals of cluster 1 were obtained (0.95 g, 72% based on FeCl₃:6H₂O). Fe₂Mo₆O₄₀C₄₈H₈₀Na, *(2030.5),* calcd Fe 5.50, Na 2.26. C 28.39, H 3.97; found Fe 5.41, Na 2.03, *C* 28.67. H 4.11

Na₂Fe₂[W₃O₄(O₂CEt)₈]₂ (2): The tungsten cluster 2 was prepared similarly to 1 by using $Na_2WO_4.2H_2O$ (0.86 g, 2.60 mmol) and W(CO)₆ (0.43 g, 1.5 mmol). Yield: 21%. $Fe₂W₆O₄₀C₄₈H₈₀Na₂$ (2557.9), calcd Fe 4.37, Na 1.80, C 22.54, H 3.15; found Fe 4.33, Na 1.61, C 22.83, H 3.22.

Na₂Fe₂[MoW₂O₄(O₂CEt)₈]₂ (3): An orange-red solution of Na[MoW₂O₂-(O,CEt),] in propionic anhydridc *(50* mLj was obtained by refluxing $Na_2WO_4.2H_2O$ (1.3 g, 4.0 mmol), and $Mo(CO)_6$ (0.53 g, 2.0 mmol) for ten hours in air. $Fe(CO)_{5}$ (0.35 mL, 2.55 mmol) was added, and the mixture was heated at 90 °C for 3 d. After the reaction had been allowed to cool to room temperature. black microcrystalline *3* was isolated from the solution (0.43 g. 18% base on Mo(CO)₆). Fe₂Mo₂W₄O₄₀C₄₈H₈₀Na₂ (2382.1), calcd Fe 4.69. Mo 8.06, Na 1.93, C 24.21, H 3.39; found Fc 4.66, Mo 7.81, Na 1.69, C 24.67, H 3.45.

Na₂Cr₂[MoW₂O₄(O₂CEt)₈]₂ (4): This cluster was synthesized similarly to 3 by using $Cr(CO)_6$ (0.5 g, 2.3 mmol). Yield: ca. 26% (0.57 g). $Cr_2Mo_2W_4O_{40}C_{48}H_{80}Na_2$ (2374.4), calcd Cr 4.38, Mo 8.08, Na 1.94, C 24.28, H 3.40; found Cr 4.17, Mo 7.22, Na 1.83, C 23.90. H 3.47.

 $\text{Na}_2\text{Mo}_2\text{[MoW}_2\text{O}_4\text{(O}_2\text{CEt)}_8]_2$ (5): This cluster was synthesized similarly to 3 using Mo(CO)₆ (0.53 g, 2.0 mmol). Yield: ca. 6%. Mo₄W₄O₄₀C₄₈H₈₀Na₂ (2462.3). calcd Mo 15.57, Na 1.87; found Mo 15.19, Na 1.87.

 $\text{Na}_2\text{Mo}_2[\text{W}_3\text{O}_4(\text{O}_2\text{CEt})_8]_2$ (6): A yellow solution of Na[W₃O₂(O₂CEt)₉] in propionic anhydride (50mL) was prcpared by rcfluxing a mixture of $Na₂WO₄·2H₂O$ (1.3 g, 4 mmol) and $W(CO)₆$ (0.66 g, 2.0 mmol) in propionic anhydride for 10 h in air. $Mo(CO)_{6}$ was added, and the mixture heated at 120 °C for 3 d. After the reaction had been allowed to cool to room temperature. black crystals of *6* precipitated from the solution in 8% yield.

X-Ray Crystallography: Thc crystallographic data for clusters **1, 2,** *5.* and *6* are summarized in Table *3.* The reflection intensities were collected on a Rigaku AFC 5R diffractometer, by using graphite-monochromated $Mo_{K_{\alpha}}$ radiation ($\lambda = 0.71069$ Å) at room temperature and $\omega/2\theta$ scan mode $(3 < 2\theta < 50^{\circ})$ with a scan speed of 8° min⁻¹. The structures were solved by direct methods using MULTAN 11/82 and refined by full-matrix leastsquares with all non-hydrogen atoms anisotropic except for in 5, where some of the non-hydrogen atoms were refined isotropically, owing to the low number of observable reflections. The Mo and W atoms of the trinuclear unit in 5 are disordered and treated as $M = 0.33 Mo + 0.67 W$, giving the reasonable temperature factors. The weighting scheme w was $1/[\sigma(F_0)^2 + (0.02F_0)^2]$ $+ 1.000$]. All calculations were performed on a Compaq Prolinea 4/66 with the Molen program package with scattering factors taken from the lnternational Tables.

Table 3. Crystallographic Data for **1, 2, 5,** and **6**

	1	$\mathbf{2}$	5	6
Μ,	2030.5	2557.9	2462.3	2638.1
F(000)	1014	1206	1174	1238
crystal size, mm	$0.2 \times 0.3 \times 0.3$	$0.3 \times 0.2 \times 0.4$	$0.3 \times 0.2 \times 0.2$	$0.3 \times 0.2 \times 0.3$
space	group	$P\overline{1}$	ΡĪ	$P\bar{1}P\bar{1}$
a, Å	12.988(6)	12.984(6)	12.805(4)	12.904 (13)
b, À	14.021(7)	14.072(7)	14.100(3)	14.144(16)
c, \mathring{A}	12.378(9)	12.436(9)	12.396(3)	12.467(14)
$\alpha,~^\circ$	109.79(5)	109.91(5)	109.97(2)	109.91(9)
β , \degree	117.50(4)	117.54(4)	117.87(2)	118.09(8)
$\gamma,$ $^\circ$	90.52(5)	90.50(5)	90.43(2)	90.42(1)
V, \AA^3	1844.2	1856.2	1821.7	1848.3
Ζ	1	1	1	1
$\rho_{\rm{calcd}},$ g cm	1.83	2.29	2.24	2.37
μ , cm ⁻¹	14,4	99.4	71.8	99.2
scan width	1.32	1.63	1.15	1.26
unique reflns	6826	6863	6169	6842
reflns $I \geq 3\sigma(I)$	3518	4586	4529	2964
no. of parameters	442	442	442	442
R [a]	0.056	0.045	0.042	0.063
W ^[b]	0.062	0.052	0.053	0.069
GOF [c]	1.31	1.24	1.40	1.37
$(\Delta \sigma)_{\text{max}}$	0.04	0.05	0.05	0.03
$(\Delta \rho)_{\text{max}}$	0.85	1.80	1.78	2.14

[a] $R = \sum |F_{\rm o}| - |F_{\rm c}| / |F_{\rm o}|$. [b] $wR = [w(|F_{\rm o}| - |F_{\rm c}|)^2 / \sum w(|F_{\rm o}|)^2]^{1/2}$. [c] GOF = $[w(|F_{o}| - |F_{c}|)^{2}/(N_{o} - N_{v})]^{1/2}.$

CrystaIbgraphic data (excluding structure factors) for the structures reported in this paper have bcen deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-1220-4s. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: Int. code +(1223)336-033; e-mail: teched@chemcrys.cam.ac.uk).

Magnetic Susceptibility, UV/Vis, and IR Spectra: The temperature-dependent magnetic susceptibilities of polycrystalline samples of' **1, 2,** and **7-10** were measured on PPMS Model-6000 over the rangc 2-200 K. The data were corrected for diamagnetism of the samples by using Pascal's constants. UV/ Vis and IR spectra were recorded on a Schiinazhu UV-3000 and Digilab FTS-40 spectrophotometers with KBr pellet, respectively.

Acknowledgements: This work was supported by the grant from the National Science of Foundation of China.

Received: June 13, 1996 [F392]

- [1] L. Xu, H. Liu, D. C. Yan, J. S. Huang, O. E. Zhang, *J. Chem. Soc. Chem Commun.* **1993,1507.**
- [2] L. Xu, H. Liu, D. C. Yan, J. S. Huang, Q. E. Zhang, *J. Chem. Soc. Dalton Trans.* 1994, 2099.
- [3] F. A. Cotton, *Po/j/irdron,* **1986. 5, 3.**
- [4] T. Shibahara, *Adr.. Inorg. Chcm.* **1991.** *37.* 143
- [5] J. X. Lu. Z. D. Cheng. *Inr. Rcv. Phj..~. Chcw* **1994.** 11.
- [6] Zn₂Mo₃O_s, a) W. H. McCarroll, L. Katz, R. Ward, *J. Am. Chem. Soc.* **1957**, 79, 5410; b) *G. B. Ansell, L. Katz, Acta. Crystallogr.* 1966, 21, 482.
- $[7]$ $[Mo₃O₄]⁴⁺$, a) A. Bino, F. A. Cotton, Z. Dori, Z. J. Am. Chem. Soc. 1978, 100, 5252; b) K. R. Rodgers, R. K. Murmann, E. O. Schlemper, M. E. Schelton, *Inorg. Chem.* **1985,** *24,* 1313: c) S. Cramer, P. K. Eideni. M. T. PalTett. J. R. Winkler, Z. Dori, H. B. Gray, *J. Am. Chem. Soc.* 1983, 105, 799; d) S. F. Gheller, **'T W.** Brownlee, R. T. *C.* O'Connor, M. J. Snow. *ihid.* **1983.** *105.* 1527: e) A Bino. F. A. Cotton, Z. Dori, *ihid.* **1979,** */01.* 3842: f) A %no. F. **A.** Cotton, Z. Don. *Inog. Chim. Acra.* **1985,** Y9. 137: 5) A. Milller. A. **Ruck. A.** Dartmann, U. Reinsch-Vogell, *Angew. Chem.* 1981, 93, 493; *Angew. Chem. Int. Ed. Engl.* **1981.** 20. 483: h) E. *0.* Schlcmpcr. M. S Hussain. R. K. Murmann. *C'rysr. Struc. Conimim.* **1982,** *If,* 89: i) P. Shreiber, K. Wieghardt. B. Nuber. *hiorg. Chiin. Acro.* 1993. *205,* 199, j) T. Shihahal-a. M. Saaaki. G. Sakane. *Inorg Chin1 Acta.* **1995,** *237.* **¹**
- [8] $[Mo, WO₄]⁴⁺, a)$ A. Patel, D. T. Richens, *J. Chem. Soc. Chem. Commun.* **1990.** 274; b) A. Patel, S. Siddiqui, D. T. Richens, M. E. Harman, M. B. Hursthouse, *J c'hcni. Soc. Dulton Duns.* **1993,** 767.
- 19) [W,0J4+, a) M. Sagawa, **Y. Sasaki,** *J. Am. Chrm. SOC.* **1985. /07.** *5565.* h) R M attes, K. Z. Mennemann, Z. Anorg. Allg. Chem. 1977. 437, 175; Angew. *Cheni.* **1976.** *A",* 92: *Anxew. Cheni. Inr. Eli. Erigl.* **1976.** *IS.* 118: *c)* P. Chaudhuri, K. Wieghardt, W. Gebert, I. Jibril, G. Z. Huttner. *Z. Anorg. Allg. Chem.* **1985,** *(21.* 23.
- [10] *a*) D. T. Richens, A. G. Sykes, *Inorg. Chem.* **1982**, 21, 418: b) M. T. Paffet, F. C. Anson, *[hid.* **1983.22,** 1347; c) B. L. Ooi, A. L. Petrou. A. G. Sykes. *ihid.* **1988.27,** 3626.
- [Ill a) F. A. Cotton, *Inorg. Chem.* **1964,** *3.* 1217: h) B. E. Bursten, F. **A.** Cotton. M. B. Hall, K. C. Najjar, *hid.* **1982.** *21,* 302.
- [12] A. Birnbaum, F. A. Cotton, Z. Dori, D. O. Marler, G. M. Reisner. W. Schwotzer, M. Shaia, *Inarg. Chrm.* **1983,** *22.* 2723.
- 1131 G. Powell, D. T. Richens, *Inorg. Chcm.* **1993.** *32,* 4021
- [14] H. Liu, L. Xu, J. S. Huang, D. C. Yan, Q. E. Zhang, *Chin. J. Struct. Chem.* **1994.** *13.* 52
- 1151 L. Xu, Z. **I1** Li, H. Liu, J. S. Huang, *J. ('onid. Ch~m.* **1996.** *36,* in press.
- [I61 L. Xu. X. F. Yu. *Chin. J. Strucr. Chrni* **1990.** *9,* 150.
- [17] L. Xu, J. S. Huang, D. C. Yan, Q. E. Zhang, *Inorg. Chem.* 1996, 35, 1389.
- [I81 L. Xu, J. S. Huang, *Q.* E. Zhang, *Po/yhcdron,* **1997.** *16.* in press.
- [I91 a) R. E. McCarlcy. *Phil. Trans. R. Soc. Lond,* **1982.** *4308.* 141. b) V. Katovic, J. L. Templeton, R. E. McCarley, *J. Am. Chem. Soc.* 1976, 98, 5705.
- *[20]* L. N. Zhang, Z. P. Lm,L. J. He, S. H. Cai, **I:.** Y Jian, *Ac,ro Chiiii Sinini (Enyl. Ed.)* **1989,** 219.
- [21] A. B. Blakc, L. R. Fraser, *J. Cheni. Soc. Dalton Tian.,.* **1975,** 193.
- [22] C. E. Anson, M. C. Saard, J. P. Bourke, R. D. Cannon, U. A. Jayasooriya, A. K. Powell, *Inorg. Cheni.* **1993.** *32,* 1502.
- 1231 F. **A.** Cotton. *G.* R Lewis. G. M. Mott, *Inorj,. C'hcvi.* **1982,** *21,* 331